A Variance Controlled Stochastic Method with Biased Estimation for Faster Non-convex Optimization

نویسندگان

چکیده

This paper proposed a new technique Variance Controlled Stochastic Gradient (VCSG) to improve the performance of stochastic variance reduced gradient (SVRG) algorithm. To avoid over-reducing by SVRG, hyper-parameter \(\lambda \) is introduced in VCSG that able control SVRG. Theory shows optimization method can converge using an unbiased estimator, but practice, biased estimation allow more efficient convergence vicinity since approach computationally expensive. also has effect balancing trade-off between and estimations. Secondly, minimize number full calculations variance-bounded batch reduce required each iteration. For smooth non-convex functions, algorithm converges approximate first-order stationary point (i.e. \(\mathbb {E}\Vert \nabla {f}(x)\Vert ^{2}\le \epsilon \)) within \(\mathcal {O}(min\{1/\epsilon ^{3/2},n^{1/4}/\epsilon \})\) evaluations, which improves leading complexity gradient-based SCSG \((\mathcal ^{5/3},n^{2/3}/\epsilon [19]. It shown theoretically experimentally be deployed convergence.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variance Reduction for Faster Non-Convex Optimization

We consider the fundamental problem in non-convex optimization of efficiently reaching a stationary point. In contrast to the convex case, in the long history of this basic problem, the only known theoretical results on first-order non-convex optimization remain to be full gradient descent that converges in O(1/ε) iterations for smooth objectives, and stochastic gradient descent that converges ...

متن کامل

Natasha: Faster Non-Convex Stochastic Optimization via Strongly Non-Convex Parameter

Given a nonconvex function f(x) that is an average of n smooth functions, we design stochastic first-order methods to find its approximate stationary points. The performance of our new methods depend on the smallest (negative) eigenvalue −σ of the Hessian. This parameter σ captures how strongly nonconvex f(x) is, and is analogous to the strong convexity parameter for convex optimization. At lea...

متن کامل

Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence

In this paper, a new theory is developed for firstorder stochastic convex optimization, showing that the global convergence rate is sufficiently quantified by a local growth rate of the objective function in a neighborhood of the optimal solutions. In particular, if the objective function F (w) in the -sublevel set grows as fast as ‖w − w∗‖ 2 , where w∗ represents the closest optimal solution t...

متن کامل

Stochastic Successive Convex Approximation for Non-Convex Constrained Stochastic Optimization

This paper proposes a constrained stochastic successive convex approximation (CSSCA) algorithm to find a stationary point for a general non-convex stochastic optimization problem, whose objective and constraint functions are nonconvex and involve expectations over random states. The existing methods for non-convex stochastic optimization, such as the stochastic (average) gradient and stochastic...

متن کامل

Asynchronous Stochastic Gradient Descent with Variance Reduction for Non-Convex Optimization

We provide the first theoretical analysis on the convergence rate of the asynchronous stochastic variance reduced gradient (SVRG) descent algorithm on nonconvex optimization. Recent studies have shown that the asynchronous stochastic gradient descent (SGD) based algorithms with variance reduction converge with a linear convergent rate on convex problems. However, there is no work to analyze asy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2021

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-030-86523-8_9